The full automorphism group of a cyclic p-gonal surface

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE FULL AUTOMORPHISM GROUP OF A CYCLIC p-GONAL SURFACE

If p is prime, a compact Riemann surface X of genus g ≥ 2 is called cyclic p-gonal if it admits a cyclic group of automorphisms Cp of order p such that the quotient space X/Cp has genus 0. If in addition Cp is not normal in the full automorphism A, then we call X a non-normal p-gonal surface. In the following we classify all non-normal p-gonal surfaces. A. Wootton University of Portland 5000 No...

متن کامل

THE AUTOMORPHISM GROUP OF NON-ABELIAN GROUP OF ORDER p^4

Let G be a finite non-abelian group of order p^4 . In this paper we give a structure theorem for the Sylow p-subgroup, Aut_p(G)  , of the automorphism group of G.

متن کامل

The full automorphism group of Cayley graphs of Z p × Z p 2

Let p ≥ 5 be prime. We determine the full automorphism groups of Cayley digraphs of Zp × Zp2 .

متن کامل

On automorphisms groups of cyclic p-gonal Riemann surfaces

In this work we obtain the group of conformal and anticonformal automorphisms of real cyclic p-gonal Riemann surfaces, where p ≥ 3 is a prime integer and the genus of the surfaces is at least (p − 1) + 1. We use Fuchsian and NEC groups, and cohomology of finite groups.

متن کامل

SYMMETRIES OF REAL CYCLIC p-GONAL RIEMANN SURFACES

A closed Riemann surface X which can be realised as a p-sheeted covering of the Riemann sphere is called p-gonal, and such a covering is called a p-gonal morphism. A p-gonal Riemann surface is called real p-gonal if there is an anticonformal involution (symmetry) σ of X commuting with the p-gonal morphism. If the p-gonal morphism is a cyclic regular covering the Riemann surface is called real c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2007.01.018